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Our contribution is to show that the relationship between wealth and disasters is mainly formed by the ex-
posure to disaster hazard. We first build a simple analytical model that demonstrates how countries that face
a low hazard of disasters are likely to see first increasing losses and then decreasing ones with increasing eco-
nomic development. At the same time, countries that face a high hazard of disasters are likely to experience
first decreasing losses and then increasing ones with increasing economic development. We then use a cross-
country panel dataset in conjunction with a hazard exposure index to investigate whether the data is consis-
tent with the predictions from the model. In line with our model, we find that the relationship of losses with
wealth crucially depends on the level of hazard of natural disasters faced by countries.
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1. Introduction

There are certainly few issues more disturbing than the prospect of
losing one's hard-earned belongings to the forces of nature. One single
instant of a wave, a tremble of the earth, or a passing by of a hurricane
is often enough to destroy one's house, one's work, and one's belong-
ings, if not one's life. Periodic news coverage, such as pictures from
flooded houses in New Orleans, hurricane-torn houses in Burma, dried
fields in Sub-Saharan Africa or the earthquake damages in Chengdu in
China, reminds us of this possibility. Unfortunately, from a global per-
spective such events are a lot more frequent than one might imagine.
For example, in 2007 alone there were approximately 450 of these nat-
ural disasters worldwide, affecting around 211 million people, and
causing economic losses amounting to 74 billion US dollars.1

One of themain stylized facts that has arisen from the still relative-
ly new academic literature on natural disasters seems to be that the
economic and human losses associatedwith natural disasters are larg-
er the poorer a country is.2 This was first shownby Burton et al. (1993)
and Tol and Leek (1999) for a sample of 20 nations and later confirmed
in more comprehensive studies covering a large panel of countries by
Kahn (2005) and Toya and Skidmore (2007). More recently, Rashky
(2008), and subsequently Kellenberg and Mobarak (2008), demon-
strate that the relationship between damages from natural disasters
and income is characterized by an inversely u-shaped relationship,
where damages first increase and then decrease with wealth. Yet, sur-
prisingly, beyond arguing, for example, that “as a country develops, it
devotes greater resources to safety, including precautionary mea-
sures…” (Hideki and Skidmore, p. 20) there are, to our knowledge,
few studies investigating the underlying mechanics driving this link,
especially those of a theoretical nature.3, 4

Arguably a key element in understanding how losses from natural
disasters are related to income is the expected hazard of these events.
More specifically, Toya and Skidmore (2007) note that there are two
relevant components to the disaster–income relationship, namely,
(1) increases in income increase the demand for safety, and (2) higher
income enables individuals to employ costly precautionary measures
in response to this demand. So, if two countries face the same level of
hazard one should expect the one with higher income to spend more
on precautionary measures and hence to suffer fewer losses if a natural
disaster occurs. Similarly, given two countries with equal wealth one
would expect the one with a higher hazard to have a higher demand
for reducing the exposure to this hazard via precautionary measures.
Toya and Skidmore (2007) do examine what county characteris-
nd quality of institutions) are correlated with the relationship be-
elopment and disaster losses, but only in an ad hoc manner.
literature that deals with decision-taking under uncertainty and
nerally not specifically addressed natural disasters. The two main
gard are the articles by Lewis and Nickerson (1989), which deals
self-insurance under uncertainty, as well as Anbarci et al. (2005),
lity and collective action to self-insurance within a natural disas-
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Thus, of two equally wealthy countries the one with a lower hazard
should suffer greater losses in the case of a natural disaster since it is
likely to have invested less in precautionary measures.

Of course, as it is with wealth, the hazard of natural disasters oc-
curring is not evenly distributed across the globe. For instance, tropi-
cal cyclones are generally prevalent only in certain coastal areas (ex:
US North Atlantic and Gulf of Mexico coastlines, Caribbean Sea, and
South Pacific), while major earthquakes are likely to occur in loca-
tions where tectonic plates collide (ex: US, Turkey, and Chile).
Hence it seems reasonable to assume that the cross-country losses–
income relationship is likely to depend on the (expected) hazard of
natural disasters that nations face.5 In other words, if the difference
in hazard is large enough then a low hazard country may very well
suffer larger losses than a higher hazard country.

In this paper we thus set out to explicitly investigate how this in-
terplay betweenwealth and hazard affects how natural disaster losses
depend on the level of economic development. We, first, develop a
theoretical model which is a simplified version of that presented in
Schumacher and Strobl (2008), where countries choose their optimal
level of prevention expenditure. We pay particular attention to the
role of the hazard of a natural disaster. A larger hazard in this model
means an increase in the marginal losses in case a disaster hits the
country as well as a higher marginal benefit from prevention expendi-
ture. We show that countries facing a low hazard are likely to see in-
creasing losses for low wealth levels, while higher wealth levels lead
to decreasing losses if prevention expenditure is sufficiently effective.
In contrast to that, high hazard countries will see prevention expendi-
ture even at very low levels of wealth, which leads to decreasing losses
for sufficiently effective prevention expenditure. Losses will be in-
creasingwith increasing wealth for high hazard countries if further in-
creases in prevention expenditure prove to be less and less efficient.
This model helps us in providing an understanding of the driving
mechanisms behind the relationship between the economic losses,
the natural hazard exposure and economic development.6

Using a cross-country panel data set we next investigate whether
the empirical evidence is consistent with the predictions of our
model. To this end we construct a proxy of country level hazard expo-
sure based on local (within country) risk probability indicators devel-
oped by Dilley et al. (2005). We then use this index to explore the
role that differences in hazard exposure play in the possibly non-
linear income–losses relationship, as suggested by our theoretical
model. Our econometric analysis demonstrates that the shape of the
relationship between wealth and losses crucially depends on the
hazard of natural disasters that countries face. More precisely, we gen-
erally find an inverse u-shaped link between losses andwealth for low
and medium hazard countries, but a u-shaped relationship for high
hazard countries. These results are robust to the implementation of al-
ternativemethodological approaches previously used in the literature.

The remainder of the paper is organized as follows. In the follow-
ing section we outline our theoretical framework and its implications.
In Section 3 we describe our data set. Our econometric specification
and results are contained in Section 4. The final section concludes.
2. Theoretical Model

Our intention here is to capture the essential relationship between
economic development, prevention expenditure and the costs of
natural disasters. The model presented here is a simplified version
of that in Schumacher and Strobl (2008), which extends Lewis and
Nickerson (1989), where we introduce risk over the state of nature
5 Neither Toya and Skidmore (2007) nor Kahn (2005) explicitly takes account of
expected risk in this regard.

6 Hallegatte (2011) has recently developed a model showing that disaster losses can
grow faster than wealth. He shows that it may be beneficial to invest in riskier regions
with increasing economic development.
and uncertainty over the extend of the damage. The predictions of
the two models are very similar. We assume that a country (or a
region) maximizes utility u(I), which is a function of net wealth,
I=w−cx−L(w,x,y)N0, where wealth is given by wN0, prevention
expenditure x≥0 comes at marginal cost cN0, and losses are given by
L(w,x,y). Here, yN0 represents the strength of a disaster, where a larger
y implies a stronger disaster. The functional forms assumed are uIN0,
uIIb0, LwN0,Lxb0, LyN0, LxxN0, Lxyb0,Lxw. All variables are in totals.

Intuitively, our assumptions imply that the amount of wealth
destroyed increases in the amount of wealth available, but is reduced
by higher prevention expenditure, while stronger disasters increase
losses. Furthermore, increasing prevention expenditure is expected
to be less and less effective, and prevention expenditure is assumed
to be more effective for larger disasters. Finally, we also assume
Lxwb0, implying that the marginal loss for a given wealth level de-
creases in prevention expenditure. This last assumption is not innoc-
uous and drives our subsequent results. It implies that the more a
country spends on prevention expenditure, the lower will be the
losses per unit of wealth increase. This seems a reasonable assump-
tion also for the kind of larger scale disasters that we focus on empir-
ically later.7 Intuitively, imagine a hurricane that landfalls in a city.
The more the city spends on adapting the housing to a hurricane
strike the less will each house be affected by the hurricane. Or, in
other words, for a low level of prevention expenditure, we expect
the marginal loss per unit of wealth increase to be larger than for
high levels of prevention expenditure.

The approach presented here can be read in two ways. Firstly, it
can be viewed as a simplified model of Schumacher and Strobl
(2008), capturing the essential underlying relationships between di-
saster hazard, wealth and prevention expenditure.

Secondly, one would ideally want to model the hazard of a natural
disaster as a risky event, with a given distribution p(g), and thus the
expected event would be y ¼ E gð Þ ¼ ∫∞

0
gp gð Þdg. Thus, g=0 would be

the case of no disaster, while g=∞ would indicate the worst possible
scenario. On average, the expected event would then be h=E(g).
Thus, our function L(w,x,y) indicates the expected, or average loss. A
country with a larger hazard would then be one where the function
p(g) attaches higher probabilities to states of the world with larger
g's, i.e. with worse events. In a slightly different interpretation, we
could view this model as one where a policy maker takes into account
that with a certain probability the protection might fail. For example,
we could write L(w,x,y)=(1−y)·0+y· L̂(w,x). Thus, in this case
y∈(0,1) and it would be interpreted as the probability that the pro-
tection fails and a loss L̂(w,x) is incurred. Prevention expenditure
would then become relevant when the protection fails. Interpreted
in this way, then the model is more suitable for disasters for which
one cannot influence the probability that protection fails but only
the final losses, for example hurricanes.8

As yet another interpretation9we couldwrite L(w,x,y)=h(x,y) 0+
(1-h(x,y)) L

~
(w), with hxN0 and hyb0. In this case, the probability of a

disaster creating a loss, i.e. the probability of a failure in the defenses,
is decreasing with the prevention expenditure. The actual damages
themselves, however, do not depend on the prevention expenditure
but only on the exposed wealth. This interpretation would then be a
useful one for studying disasters like flooding, since dams may reduce
the probability that an event induces a loss. However, once a dam
breaks the actual loss is only depending on the exposed wealth.
7 Specifically, by this we mean those disasters that are sufficiently large as to have
made their way into the EM-DAT database, which we use for our empirical study.

8 Hence, it would be less suited to study flooding, since in this case one can mainly
influence the probability that the event materializes in a loss by building a sufficiently
high dam.

9 We are grateful to the editor for suggesting this interpretation.
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We now turn to derive themain intuitions from this simple model,
which we collect in the following propositions. The proofs are pre-
sented in a didactic way.

Proposition 1. Ceteris paribus,∃ŷ, such that∀yNŷ; xN0, while∀y≤ŷ; x ¼ 0:
Furthermore, ceteris paribus, ∃ŵ, such that ∀wNŵ; xN0; while ∀wbŵ;

x ¼ 0:

If we maximize the utility function with respect to the control
x∈ [0,w/c] then we obtain

−Lx≤c;

with equality if xN0. If the marginal benefits from prevention expen-
diture Lx exceed the marginal cost c, then it would be optimal to in-
crease prevention expenditure until both are equal. On the other
hand, if the marginal benefits from prevention expenditure are
lower than the marginal costs, then no prevention expenditure
should be undertaken. In this case we will observe a corner solution
with x=0. It is easy to show that, for a given N0, ∃ŷ, such that
∀yN bð Þŷ; xN ¼ð Þ0: Furthermore, for a given yN0, ∃ŵ, such that
∀wN bð Þŵ; xN ¼ð Þ0: Both results derive directly from the first-order
condition and the assumptions on the loss function. Intuitively, if ei-
ther wealth is high enough or the disaster is expected to be sufficient-
ly strong, then prevention expenditure will be positive. Thus, low-
hazard countries are unlikely to undertake prevention expenditure,
while high-hazard countries should invest in prevention, and increas-
ing wealth is more likely to lead to prevention.

Proposition 2. ∃ ŷ; ŵð Þ such that ∀ybŷ and ∀wbŵ,
dL
dw

N0. Furthermore,
dL
dw

b Nð Þ0 if
Lw
Lwx

N bð Þ Lx
Lxx

.

The change in prevention expenditure when wealth changes is
given by

dx
dw

¼ − Lxw
Lxx

N0:

Therefore, not only do we find that increasing wealth may drive a
country from a corner solution in prevention expenditure to an interior
solution, in additionwe conclude that prevention expenditure increases
with higher wealth.

We now pay particularly close attention to the role of hazard along a
country's path of economic development. As losses are given by L(x,w,y),
then economic losses respond to changes in wealth as follows:

dL
dw

¼ Lw þ Lx
dx
dw

:

As derived in Proposition 2, for a given level of wealth there exists
a ŷ such that for all ybŷ, we obtain a corner solution with x=0. Thus,
we can derive that, for a sufficiently low w and if ybŷ, then

dL
dw

¼ LwN0;

which implies that losses are increasing in wealth if the hazard is low.
This suggests that it would not be worthwhile to invest in prevention
expenditure if the additional costs of prevention expenditure do not
sufficiently compensate for the marginal losses in wealth. If a coun-
try's wealth keeps increasing, then ∃ŵN0, such that ∀wNŵ we have
xN0, which implies that undertaking prevention expenditure be-
comes worthwhile. Thus, at an interior solution for 0bxbw/c we ob-
tain dL

dw ¼ Lw þ c Lxw
Lxx

: Furthermore, if Lw
Lwx

N Lx
Lxx
, then dL

dwb0: In this case,
increasing prevention expenditure reduces total losses. The condition
LwbLx

Lxx
Lxx

has an intuitive interpretation. LwN0 suggests that, ceteris
paribus, economic development increases losses from disasters. If a
planner undertakes prevention expenditure, then this, firstly, changes
the ‘growth rate’ in Lx (which is defined as dLx
dx =Lx ), and secondly it re-

duces the marginal losses from increases in wealth.
As shown in Proposition 2, for sufficiently high hazard countries, we

will see an interior solution in prevention expenditure even for very low
levels of wealth. In this case, dLdwb0 if Lw

Lwx
N Lx

Lxx
: Once a significant amount of

prevention expenditure has been undertaken, then themarginal benefit
from undertaking additional prevention expenditure will be low. This
would imply that dL

dwN0 if Lw
Lwx

b Lx
Lxx

:

In the case where prevention expenditure affects the probability
of a disaster but not the actual losses, then the economic loss-wealth
relationship would simplify to dL

dw ¼ Lew 1þ h2x
hxx

� �
: Thus, whether losses

increase or decrease with wealth then depends only on how the ef-
fectiveness of the defenses changes with increasing prevention
expenditure.

To sum up, we have shown that low hazard countries are unlikely to
undertake prevention expenditure for low levels of wealth while with
increasing development these countries will find prevention expendi-
ture more profitable. If, furthermore, an increase in wealth leads to pre-
vention expenditure that compensates for the additional loss incurred in
case a disaster occurs, then total losses will decrease along the path of
economic development.

In contrast to low hazard countries, we have shown that high haz-
ard countries will undertake prevention expenditure even at very low
levels of wealth, and will see decreasing losses with increasing wealth
if the marginal benefits from prevention expenditure outweigh the
costs. This is likely to lead to decreasing losses along the path of eco-
nomic development. As one can easily argue, the potential for preven-
tion expenditure is not unlimited and marginal benefits from further
prevention expenditure will be declining. This effect should be more
significant for high hazard countries than for low hazard ones. In
that case, we are likely to see increasing losses with higher levels of
wealth.

Thus, we have shown that high hazard countries are likely to have a
u-shaped relationship between wealth and economic losses, while low
hazard countries are likely to have an inversely u-shaped one.

The model, due to its generality and minimalistic assumptions on the
functional forms, certainly leaves several aspects open. Nevertheless, it
provides an intuitive explanation for the way natural hazards affect pre-
vention expenditure and thus losses along a country's path of economic
development. To obtain a concrete idea about these relationships, we
now turn to our empirical study that disentangles the aspects empirically.

3. Data

3.1. Hazard Exposure Data

An important aspect of our studywith regard to investigatingwhether
the data are consistent with predictions of our theoretical model is a
proxy for the expectedhazardof anatural disaster. Fromanempirical per-
spective ideally one would thus like to have some sort of indicator of the
probability density function for natural disasterwhich describes the prob-
ability of occurrence along the complete range of intensities. In order to
derive such a proxy we avail of the natural disaster global hot-spots
data constructed by a joint effort from the World Bank Hazard Manage-
ment Unit and the Center for Hazards and Risks Research Unit at Colum-
bia University (see Dilley et al. (2005)). More specifically, this research
team developed an innovative summary proxy of hazard exposures
faced locally (within countries) across the globe. It takes account of both
the likelihood of a natural disaster event as well as the local exposure to
it (in terms of population) for five different natural disasters: cyclones,
earthquakes, landslides, floods, and droughts. Details of their methodolo-
gy are given in the Data Appendix.

Since the multi-hazard index by Dilley et al. (2005) is calculated
for local sub-national level grid cells we derive a national measure
of natural disaster (per capita) hazard by summing grid cells' multi-
hazard values within countries and normalizing this sum by a



Fig. 1. Distribution of HZ. Note: (1) Gray colored areas indicate zero value. (2) Darker shading of non-gray colored countries indicates greater value of HZ.
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country's population size (in '000 s) in 2000 as given by the GPW
data.10 We depict our country level proxy of natural disaster hazard
in Fig. 1. The graph demonstrates the unequal distribution of hazard
exposure across the globe. Although not easily detectable from the
graph, the highest hazard countries are, unsurprisingly, mostly
small islands – as, for example, Vanuatu, Turks and Caicos Islands,
and Belize – although also some larger countries also feature in the
very hazardous groups (ex: Somalia, Afghanistan, and Chile).
3.2. Economic Loss Data

The loss due to natural disasters data that we use are compiled from
the nowwell-known EM-DAT database maintained by the Centre for Re-
search on the Epidemiology of Disasters (CRED)which compiles informa-
tion on natural disasters across countries over time, where natural
disasters are defined as natural events that overwhelm local capacity, ne-
cessitating a request for assistance from national or international levels.
The information underlying the data is derived from a variety of sources,
including international and research institutions, insurance companies,
and press agencies. In order for an event to be considered a natural ‘disas-
ter’ it must report having caused deaths of at least ten people, having af-
fected at least 100 people, resulted in a call for international assistance,
and/or resulted in a declaration of a state of emergency. Given the defini-
tion of ourmulti-hazardmeasurewe limit our analysis to economic losses
due to windstorms, droughts, earthquakes, floods, landslides, and volca-
noes as defined by the EM-DAT database. The average yearly per capita
losses are depicted in Fig. 2.11 Accordingly, even within continents there
are notable differences in the economic losses due to natural disasters.
If one examines the group of countries with the greatest losses, one
discovers that this includes both developed (ex: US and Japan) as well
as developing nations (ex: Philippines and Mexico).
3.3. Other Data

Our time-varying country level measure of GDP per capita is taken
from the World Penn Data Tables. Additionally, we use its estimate of
(time varying) population size. Finally, a measure of geographical size
of each country is taken from the Global Rural–Urban Mapping Pro-
ject (GRUMP).
10 One may want to note that we use the population size in 2000 since the population
density data weighting scheme of our measure is also derived from 2000 data.
11 While our benchmark measure of losses due to natural disasters are the monetary
losses just described, one should note that we also experiment with using deaths as a
proxy; see the end of Section 4.
3.4. Sample

Although in principle the data required for our estimation could
start from 1960, one should note that we restrict our sample to
cover the period 1980–2004.12 This is done for two reasons. Firstly,
while for some of the underlying disaster types the hazard indicators
are derived from time invariant data or data over long time periods,
for others this would have been constructed from data available
from roughly the 1980s onwards. If the local probabilities of occur-
rence along the complete range of intensities of these disasters vary
over time then our proxy may not be representative of the actual dis-
tributions for the period prior to 1980. Secondly, there may be some
concern that particularly for earlier years the quality of the EM-DAT
database may have been poor (see Strömberg (2007)). Restricting
our sample period to observations from 1980 onwards and using
only observations where the non-missing values on all variables
used in our analysis resulted in a total sample size of 4144 covering
181 countries. A set of summary statistics for all variables is provided
in Table 1.

4. Econometric Analysis

Our primary empirical purpose is to investigate whether the data
is consistent with the predictions from our theoretical framework.
In this regard we start off with the base specification relating eco-
nomic losses to the level of economic development:

log
LOSSESi;t
POPi;t−1

þ 1

 !
¼ αþ β1 log

GDPi;t−1

POPi;t−1

 !

þ β2 log
GDPi;t−1

POPi;t−1

 !2

þ λj ∑
m

j¼1
Xi;t−1 þ εi;t ð13Þ

where i is a country indicator and t a time subscript. LOSSESi;tPOPi;t−1
are a (per

capita) measure of economic losses due to natural disasters as taken
from the EM-DAT database, log GDPi;t−1

POPi;t−1

� �
is a measure of economic de-

velopment (wealth) as taken from the World Penn Tables and includ-
ed both in levels and in quadratic form to capture its arguably non-

linear relationship to losses, ∑
m

j¼1
Xi;t−1 is a set of other possibly time

and/or cross-country varying control variables, and εi, t is an error
term. In terms of other control variables we include the logged
value of national population density and the logged value of the
total geographical area of a country, as well as a set of year dummies.
12 One should note, however, that including the earlier data in our analysis did not
change the results qualitatively and little quantitatively.



Fig. 2. Distribution of LOSS. Note: (1) Gray colored areas indicate zero value. (2) Darker shading of non-gray colored countries indicates greater value of per capita losses.
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One should note that the dependent variable in Eq. (13) consists of
a large number of zeros since many countries for many years experi-
ence no economic losses, which may be due to no disasters occurring
in that year or potential disasters not translating into economic
losses. This renders standard Ordinary Least Squares inappropriate
as an estimationmethodology andwe hence resort to using a tobit es-
timator which explicitly deals with such lower truncation in the data.
To take account of potential heteroskedasticity and correlation of ob-
servations across time within countries, we calculate robust standard
errors allowing for within-country clustering of the error term.

Finally, though the theoretical model is in totals, in the empirical
part we use per capita terms. This we do in order to incorporate
changes that may arise due to population growth.

4.1. Main Results

The estimates of our base specification in Eq. (13) are given in
Table 2. As can be seen, the significant coefficients on log(AREAi)
and log(POPi,t-1/AREAi) indicate that per capita economic losses due
to disasters increase with geographical size and greater population
density of a country. More importantly, both GDP per capita and its
squared value are found to be statistically significant. The signs of
their coefficients suggest an inverted u-shaped relationship between
economic losses and economic development, as found by Rashky
(2008) and Kellenberg and Mobarak (2008). Calculations using the
Table 1
Summary statistics.

Variable Mean St. dev.

LOSSall 0.442637 1.198036
Log(GDP/POPi,t−1) 8.303593 1.13478
HZ 22.71573 33.6286
Log(POP/AREA i,t−1) −3.02509 1.587856
Log(AREA I) 11.44056 2.584813
LOSSEQ 0.057564 0.454302
LOSSLS 0.007359 0.150434
LOSSCY 0.213984 0.911184
LOSSFL 0.157363 0.626108
LOSSDR 0.042535 0.383609
LOSSVO 0.005302 0.130794
DEATHEQ 0.005335 0.0596863
DEATHEQ 0.001828 0.040488
DEATHLS 0.00035 0.009327
DEATHCY 0.001874 0.029065
DEATHFL 0.001029 0.013799
DEATHDR 0.001869 0.056977
DEATHVO 0.000138 0.007362
ENERGY 0.340081 1.512644

Notes: (1) Summary statics for regression sample only; (2) CY: cyclones; DR: droughts;
EQ: earthquakes; FL: floods; LS: landslides; VO: volcanoes.
(3) ENERGY is multiplied by 1014.
estimated coefficients indicate that the turning point occurs at a
point slightly above the mean level of GDP per capita (at a value of
9.48), which roughly corresponds to the wealth of a country like
Chile — after which the level of development and economic losses
have a negative relationship.

We next include our natural disaster multi-hazard measure in
Eq. (13), denoted as HZ, in the second column of Table 2. Accordingly,
its inclusion first of all noticeably changes the size of the coefficients
on our indicator of development and its value squared. This demon-
strates that not controlling for differences in hazard exposure will bias
the estimated economic loss–development relationship. Under these
new coefficients the turning point is predicted to be later (at a logged
GDP per capita value of 10), i.e., around the level of development of
New Zealand. Our country-level proxy of hazard exposure is found to
have a significant positive effect on economic losses suffered.

In the third column of Table 2 we interact our hazard proxy with
GDP per capita in levels and its squared term to see whether the
wealth–loss relationship depends on disaster hazard. As can be
seen, both the slope of the wealth-development link as well as its
rate of change significantly depends on the probability of a natural
hazard of a country. More specifically, the signs on the interaction
terms indicate that the more exposed a country is to natural hazards
the flatter its inverted u-shaped relationship will be. In other words,
for countries where natural disasters are more likely, greater wealth
will have a reducing effect on economic losses suffered at a later
stage of development and at a lower rate. In Fig. 3 we depict the im-
plied wealth–loss relationship for when the hazard is 0 and at the
20th, 40th, 60th, and 80th percentile of its non-zero distribution in
our data. As can be seen, the zero, 20th, 40th, and 60th percentile
curves are all inverted u-curves, while at the 80th percentile the
shape is reversed. Simple calculations show that this ‘reversal’ occurs
around the 70th percentile.

4.2. Robustness Analysis

Wealso conduct a number of robustness checks. Firstly, the distribu-
tion of our multi-hazard index is extremely skewedwhere the value for
some countries is a multifold of the average. Feasibly, these extreme
outliers could be driving our results. To investigate this we re-ran the
specification in the third column, but excluded all countries for which
the hazard rate was above the 90th percentile of its distribution, i.e.,
above values of 45. As can be seen, not only are the results qualitatively,
but also quantitatively very similar to before.

Onemay alsowant to note that although the economic loss data is the
most comprehensive collection of information on costs of natural disas-
ters across countries over time available, it has some shortcomings (see
Toya and Skidmore (2007)). First of all, the data on damages suffered
due to the natural disasters generally includes only direct, and not
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Table 2
Multi-hazard regressions.

(1) (2) (3) (4) (5) (6)

Dep. var.: LOSS LOSS LOSS LOSS DEATH LOSS
Log(GDP/POPi,t−1) 7.043*** 5.312*** 7.381*** 7.071*** 0.141** 8.467***

(2.110) (1.952) (2.382) (2.633) (0.055) (3.021)
[Log(GDP/POPi,t−1)]2 −0.367*** −0.258** −0.396*** −0.374** −0.009*** −0.432**

(0.126) (0.118) (0.142) (0.158) (0.003) (0.180)
HZi 0.023*** 0.745** 0.848** 0.010* 1.139***

(0.006) (0.334) (0.421) (0.006) (0.437)
Log(GDP/POPi,t−1)∗HZi −0.191** −0.208** −0.003* −0.281***

(0.078) (0.102) (0.001) (0.102)
[Log(GDP/POPi,t−1)]2∗HZi 0.013*** 0.013** 0.000** 0.018***

(0.005) (0.006) (0.000) (0.006)
Log (POP/AREA i,t−1) 0.841*** 1.028*** 1.051*** 1.038*** 0.030*** 1.139***

(0.119) (0.126) (0.126) (0.129) (0.007) (0.165)
Log(AREA I) 0.686*** 0.768*** 0.768*** 0.727*** 0.027*** 0.786***

(0.061) (0.059) (0.059) (0.063) (0.006) (0.081)
Constant −42.211*** −36.463*** −43.883*** −42.604*** −0.910*** −51.820***

(8.716) (7.984) (9.822) (10.799) (0.240) (12.353)
Sample: ALL ALL ALL HZib45 ALL CY,DR,EQ,LS
Observations 4144 4144 4144 3685 4144 4144
Left Cens. 3136 3136 3136 2783 2766 3466
Pseudo R2 0.0720 0.0839 0.0901 0.103 5.925 0.0787

Notes: (1) Standard errors in parentheses; (2) Time dummies included; (3) Robust standard errors allowing for within country clustering; (4) ***, **, and * are 1, 5, and 10%
significance levels. (5) CY: cyclones; DR: droughts; EQ: earthquakes; FL: floods; LS: landslides; VO: volcanoes.
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indirect, costs. Additionally, there is the possibility that reported damages
may be exaggerated in order to secure greater international assistance. Fi-
nally, theremay be some suspicion that data is of poorer quality for devel-
oping countries, since these tend to have less insurance coverage, poorer
bookkeeping, and more informal markets. As an alternative measure we
thus also experiment with the (logged) number of deaths per capita,
also given in the EM-DAT database, under the assumption that human
losses are likely to be correlatedwith actualmonetary losses.13 The results
of using this alternative dependent variable in our specification with all
interaction terms are given in the fifth column of Table 2. Reassuringly,
one finds qualitatively similar coefficients as for the economic loss data.

Thus far we have treated all six disasters as one homogenous
group by using a multi-hazard index in our analysis. Feasibly, howev-
er, disasters may have very different effects on the wealth–loss rela-
tionship. Moreover, as discussed above, the underlying hazard
measures come from very different data sources, where some are
based on actual events (windstorms, floods, volcanoes, droughts),
some on time-invariant probabilistic measures (landslides), and
others on both (earthquakes). Additionally, these data sources differ
in their quality.14 To investigate whether our general results hold
across disasters types we calculated analogous country-level mea-
sures of hazards for each disaster type (i.e., by not summing across
hazards). Re-defining the dependent variable to only consider losses
of the disaster type in question, we first re-ran our specification for
each disaster type separately in Table 3. Accordingly, for all disaster
types the hazard measure has a positive and significant effect on
losses, hence providing some support that these are appropriate
proxies of the probability of a disaster occurring along the range of se-
verities. One may want to note in this regard that in this base specifi-
cation, however, for both windstorms and landslides there appears to
be no relationship between losses and economic development.15
13 The correlation between the reported number of deaths and the reported number
of losses was found to be positive and statistically significant.
14 For example, the flood data is known to be poor for parts of the 1990s. There is also
some suspicion that the cyclone data may differ in quality across regions. Finally, al-
though there is something to be said for using a uniform definition of drought, such
as the weighted anomaly of standard precipitation, there is some skepticism in the lit-
erature whether a single measure can be appropriate for all regions of the globe; see,
for instance, Bhalme and Mooley (1979).
15 This holds even when we exclude the squared term of logged GDP per capita.
We next generated and included the necessary interaction terms
to replicate the specification from the third column in Table 2 for
each disaster type. The results of this are given in Table 4. Firstly,
one may want to note that there is now a significant wealth–loss re-
lationship for all disaster types, although not always non-linear.
Moreover, in terms of our interaction terms for three of the six disas-
ter types, namely, windstorms, earthquakes, and landslides, we get
similar qualitative results to our multi-hazard regression, except
that for windstorms the lack of significance on the squared logged
GDP per capita terms indicates that any non-linear effect of wealth
on losses only acts through reducing the dampening effect of being
subjected to a greater probability of windstorms. In contrast, being
more hazardous in terms of droughts, floods, or volcanoes does not
appear to influence how greater development affects economic
losses.

We also experimented with using our alternative proxy for losses,
i.e., the logged deaths per capita, for the different disaster types, as
shown in Table 5. Here one discovers that the results derived from
the multi-hazard analysis holds across four different disaster types,
namely windstorms, earthquakes, droughts, and landslides. In
Fig. 3. The losses–wealth relationship by natural disaster hazard level.
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Table 3
Single hazard regressions — No interaction effect.

(1) (2) (3) (4) (5) (6) (7)

Dep. var.: LOSS LOSS LOSS LOSS LOSS LOSS LOSS
Log(GDP/POPi,t−1) 3.426 8.401** 4.654 3.138** 11.345** 8.568** 8.900***

(3.116) (4.130) (3.441) (1.235) (5.454) (3.841) (0.017)
[Log(GDP/POPi,t−1)]2 −0.125 −0.457* −0.230 −0.159** −0.638** −0.456** −0.458***

(0.187) (0.241) (0.208) (0.074) (0.317) (0.223) (0.002)
HZi 0.063*** 0.032* 0.089** 0.052*** 0.516** 0.070*** 0.123***

(0.014) (0.017) (0.042) (0.012) (0.205) (0.016) (0.005)
ENERGY 0.317***

(0.013)
Log(POP/AREA i,t−1) 1.165*** 0.805*** 0.861*** 0.837*** 0.656** 1.370*** 0.139***

(0.207) (0.220) (0.249) (0.097) (0.297) (0.256) (0.037)
Log(AREA I) 0.735*** 1.071*** 0.803*** 0.824*** 0.888*** 1.370*** 0.611***

(0.098) (0.145) (0.179) (0.063) (0.230) (0.185) (0.010)
Constant −31.941** −61.575*** −37.860*** −27.270*** −68.965*** −59.855*** −59.663***

(12.749) (17.775) (14.076) (5.374) (25.503) (16.926) (0.140)
Sample: CY DR SL FL VO EQ EQ
Observations 4144 4144 4144 4144 4144 4144 93
Left Cens. 3649 4045 4107 3602 4126 3987 59
Pseudo R2 0.0869 0.0998 0.124 0.153 0.109 0.179 0.246

Notes: (1) Standard errors in parentheses; (2) Time dummies included; (3) Robust standard errors allowing for within country clustering; (4) ***, **, and * are 1, 5, and 10%
significance levels. (5) CY: cyclones; DR: droughts; EQ: earthquakes; FL: floods; LS: landslides; VO: volcanoes. (6) ENERGY is multiplied by 1014.
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contrast this is not the case for floods and volcanoes. Onemay want to
note that the data underlying the hazard calculation is particularly
poor for flood events (see Dilley et al. (2005)).

Given that our analysis by disaster types consistently showed a lack of
results in congruencewith ourmulti-hazard analysis forfloods and volca-
noes we re-conducted our multi-hazard analysis excluding these two di-
saster types. The results of this are given in the final column of Table 2.
Reassuringly, only considering windstorms, earthquakes, droughts, and
landslides does not alter our overall conclusions regarding the interplay
between economic losses, the level of development, and hazard expo-
sure, although this does alter the size of these effects marginally.

Another concernmay bewith regard to the nature our sample.More
specifically, by creating a panel of country loss data over timewe are not
only including years in which potential natural disasters translated into
actual natural disasters and years in which potential natural disaster
events did not cause enough damage to be considered a ‘disaster’, but
also years in which neither such events took place. Moreover, we do
not control for the scientific severity of the event when it does occur.
If either the probability of a potential disaster event or the magnitude
of the event are correlated with wealth, but not completely captured
by our hazard variable, then our results may be biased. Of course, iden-
tifying potential disaster events and their magnitude would be a diffi-
cult if not impossible task for all disaster types included in our data.
One exception in this regard are earthquakes, for which there are rela-
tively accurate historical records to identify actual significant earth-
quake events, even if they did not translate into major natural
disasters as captured by the EM-DAT database. In particular, the Signif-
icant Earthquakes Database maintained by the NOAA contains a listing
of earthquakes over time if they resulted in ten or more deaths, moder-
ate damage (approximately $1 million ormore), a magnitude of at least
7.5 on theRichter Scale, or aModifiedMercalli Intensity of at least X. Ad-
ditionally, the database includes a scientific measure of the actual mag-
nitude of the earthquake in terms of its Richter scale.

To investigate whether the concerns regarding our sample and the
lack of ameasure of the intensity of eventswe focused on all earthquake
event country observations in the Significant Earthquakes Database and
re-ran Eq. (13) including the hazard interaction terms aswell as a mea-
sure of the energy released as implied by the magnitude, where we
weight the latter by the share of population within a country within a
50 km radius of the epicenter.16 One should note that this reduced
16 Energy released is measured in joules (divided by 1017) as given by the scale at
http://earthquake.usgs.gov/learning/faq.php?categoryID=2&faqID=33.
our sample to 93 data points, of which 59 were earthquake event
years that did not, according to the EM-DAT database, result in econom-
ic losses. The results are given in the last column of Table 3. As can be
seen, the energy of the earthquake is, as would be expected, positively
related to the amount of economic losses. More importantly, our results
concerning the loss–wealth relationship and the dependency of this on
the hazard faced by a country, shown in the last column of Table 4, are
qualitatively similar as in Column 6 of the same table, where we used
our benchmark sample for earthquakes.
5. Conclusion

In this article we investigate the relationship between the losses
from natural disasters, the exposure to different levels of natural
hazard and the stages of economic development. Our main contri-
butions are the analysis of this relationship via a theoretical
model as well as through an econometric analysis of a cross coun-
try panel dataset. We find that both the theoretical model and the
empirical analysis predict a non-linear relationship between eco-
nomic losses and the stages of economic development and that
this crucially depends on a country's hazard of natural disasters.
More specifically, countries that face low or intermediate hazard
have a bell-shaped relationship between economic losses and
wealth; whereas countries that face high hazard have a u-shaped
relationship between losses and wealth. This stands in contrast to
the current literature, which has suggested losses either always de-
crease or, more recently, face an inverted u-shaped relationship
with wealth.

Our results indicate that extreme care must be taken when model-
ing and analyzing the relationship between wealth and economic de-
velopment. More specifically, there appears to be no simple
‘increasing wealth–reducing losses’ relationship, making policy rec-
ommendations that much harder. One primary prominent feature
that comes out of our analysis is, however, that the exposure to natu-
ral disaster hazard is an important driving force behind any relation-
ship between economic losses and wealth. In terms of policy
suggestions, it seems therefore essential to generate and provide as
much information as possible concerning likely current and future
hazards of the different areas where people are living or planning to
move to. This information is necessary for agents to properly adapt
to the natural hazard situation and should therefore help prevent ex-
cessive losses.

http://earthquake.usgs.gov/learning/faq.php?categoryID=2&faqID=33


Table 4
Single hazard regressions — Interaction effect.

(1) (2) (3) (4) (5) (6) (7)

Dep. var.: LOSS LOSS LOSS LOSS LOSS LOSS LOSS
Log(GDP/POPi,t−1) 5.950* 8.627* 6.429* 3.016* 12.776** 10.357** 19.231***

(3.254) (4.745) (3.487) (1.602) (5.233) (4.097) (6.522)
[Log(GDP/POPi,t−1)]2 −0.276 −0.489* −0.336 −0.158 −0.721** −0.566** −1.061***

(0.196) (0.276) (0.212) (0.097) (0.304) (0.239) (0.377)
HZi 2.106*** 1.465 15.987*** 0.116 55.856 3.278* 5.657***

(0.566) (1.308) (5.777) (0.530) (42.528) (1.940) (1.833)
Log(GDP/POPi,t−1)∗HZi −0.501*** −0.406 −3.809*** −0.028 −12.871 −0.792* −1.335***

(0.140) (0.331) (1.371) (0.129) (10.048) (0.458) (0.422)
[Log(GDP/POPi,t−1)]2∗HZi 0.031*** 0.028 0.227*** 0.002 0.745 0.049* 0.080***

(0.009) (0.021) (0.081) (0.008) (0.592) (0.027) (0.024)
ENERGY – – – – – – 0.356**

(0.168)
Log(POP/AREA i,t−1) 1.152*** 0.799*** 0.904*** 0.830*** 0.663** 1.427*** 0.252

(0.212) (0.209) (0.240) (0.098) (0.300) (0.260) (0.301)
Log(AREA I) 0.739*** 1.060*** 0.832*** 0.813*** 0.891*** 1.393*** 0.622**

(0.102) (0.138) (0.183) (0.064) (0.233) (0.191) (0.282)
Constant −42.401*** −61.014*** −45.399*** −26.279*** −75.136*** −67.103*** −93.942***

(13.219) (20.251) (14.335) (6.592) (24.633) (17.981) (29.505)
Sample: CY DR SL FL VO EQ EQ
Observations 4144 4144 4144 4144 4144 4144 93
Left Cens. 3649 4045 4107 3602 4126 3987 59
Pseudo R2 0.0926 0.104 0.136 0.154 0.113 0.186 0.262

Notes: (1) Standard errors in parentheses; (2) Time dummies included; (3) Robust standard errors allowing for within country clustering; (4) ***, **, and * are 1, 5, and 10%
significance levels. (5) CY: cyclones; DR: droughts; EQ: earthquakes; FL: floods; LS: landslides; VO: volcanoes. (6) ENERGY is multiplied by 1014.
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Data Appendix. Outline of the Construction of a Multi-Hazard Risk
Exposure Index by Dilley et al. (2005)

First, using the spatial grid schemata from the Gridded Population
of the World (GPW) version 1 data set, the globe was divided into
2.5′×2.5′ spatial units, resulting in about 8.7 million cells. Grid cells
with less than five persons per kilometer were masked out since,
while residents might be exposed to natural disasters, total casualties
and/or losses are likely to be small. For the remaining cells indicators
of hazard were then calculated separately for cyclones, droughts,
earthquakes, floods, landslides, and volcanoes given available spatial
data on probability, occurrence, and extent:

o Cyclones: For cyclones storm track data covering the Atlantic,
Pacific, and Indian Oceans over the period 1980–2000 was used
Table 5
Single hazard regressions — Alternative loss indicator.

(1) (2)

Dep. var.: DEATH DEATH
Log(GDP/POPi,t−1) 0.147** 0.286***

(0.059) (0.105)
[Log(GDP/POPi,t−1)]2 −0.008** −0.017***

(0.003) (0.006)
Log(POP/AREA i,t−1) 0.026*** 0.023***

(0.008) (0.006)
Log(AREA I) 0.018*** 0.025***

(0.005) (0.007)
HZi 0.023** 0.083*

(0.010) (0.049)
Log(GDP/POPi,t−1)∗HZi −0.005** −0.020*

(0.002) (0.011)
[Log(GDP/POPi,t−1)]2∗HZi 0.000** 0.001*

(0.000) (0.001)
Constant −0.909*** −1.543***

(0.299) (0.513)
Sample: CY EQ
Observations 4144 4144
Left Cens. 3503 3872
Pseudo R2 0.963 0.903

Notes: (1) Standard errors in parentheses; (2) Time dummies included; (3) Robust stand
significance levels. (5) CY: cyclones; DR: droughts; EQ: earthquakes; FL: floods; LS: landslid
in conjunction with a wind field model to calculate the wind
speeds experienced within each grid cell. A measure of local haz-
ard then consisted of considering the frequency as well as the
wind strength of events.

o Droughts: To calculate local measures of the hazard of droughts
the weighted anomaly of standardized precipitation were com-
puted for each grid cell from monthly rainfall data over the
21 year period. Drought events, from which the local hazard was
constructed, were identified when a cell experienced a precipita-
tion deficit was less than or equal to 50% of its long term median
value for 3 or more consecutive months.

o Earthquakes: For earthquakes information from both the local prob-
abilistic estimate from the Global Seismic Hazard Program aswell as
actual earthquake events for the period 1976 to 2000 were utilized.
(3) (4) (5) (6)

DEATH DEATH DEATH DEATH
2.678* 0.037** 0.033 1.381*
(1.489) (0.015) (0.023) (0.823)
−0.198** −0.002** −0.002 −0.081*
(0.099) (0.001) (0.001) (0.048)
0.160*** 0.004*** 0.011*** 0.041*
(0.062) (0.001) (0.004) (0.022)
0.191*** 0.005*** 0.011*** 0.060*
(0.071) (0.001) (0.004) (0.031)
0.413* 0.079** −0.003 5.247
(0.224) (0.033) (0.005) (3.877)
−0.110* −0.019** 0.001 −1.238
(0.058) (0.008) (0.001) (0.922)
0.007** 0.001** −0.000 0.073
(0.004) (0.000) (0.000) (0.055)
−12.709** −0.221*** −0.287** −6.901*
(5.895) (0.077) (0.133) (3.990)
DR SL FL VO
4144 4144 4144 4144
4108 3911 3263 4121
0.191 −1.812 −0.635 0.482

ard errors allowing for within country clustering; (4) ***, **, and * are 1, 5, and 10%
es; VO: volcanoes.
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o Floods: Flood hazards measures were derived from the Dartmouth
Flood Observatory database which provides information on the lo-
cation and extent of major flood events across the globe since
1985.

o Landslides: As a measure of the probability of landslide disasters
information was taken from the global landslide hazard map de-
veloped by the Norwegian Geotechnical Institute which is based
on local slope, soil and soil moisture conditions, precipitation, seis-
micity, and temperature.

o Volcanoes: For volcanoes spatial coverage of volcanic activity from
79 A.D. through 2000 A.D. from the Worldwide Volcano Database
served as the basis for the local hazard measure construction.

In order to arrive at a local summary measure of hazard for each
disaster type each grid cell was grouped into global deciles according
to the local hazard derived from the underlying data just described.17

Each cell was then for each disaster type category weighted according
to its decile in the global distribution on a 1 to 10 scale, where those
in the top decile were given a value of 10, those in the second highest
a value of 9 etc. Values of 8 and above were then summed over all di-
saster types to arrive at a multi-hazard summary measure at the grid
cell level, necessarily ranging between 0 and 48.

Since the probability of total losses due to natural disasters will
not only depend on the probability and scale of the incident but
also on the potential local exposure, we follow the Dilley et al.
(2005) and for each grid cell multiply the multi-hazard summary
measure by their proposed index of local population density estimate
based on the 2000 values from GPW data, which similarly consists of
values ranging from 1 to 10 according to its global decile grouping.
17 For example, for cyclones the local hazard would have been calculated by translat-
ing wind speeds at the 1 km2 scale into the Saffir Simpson Hurricane scale, and using
these to calculate how often a grid cell is hit and what severity over the 21 year period.
Thus this population density weighted multi-hazard index can feasi-
bly range in value from 0 to 480.
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